

以太网多路模拟信号采集隔离变送器

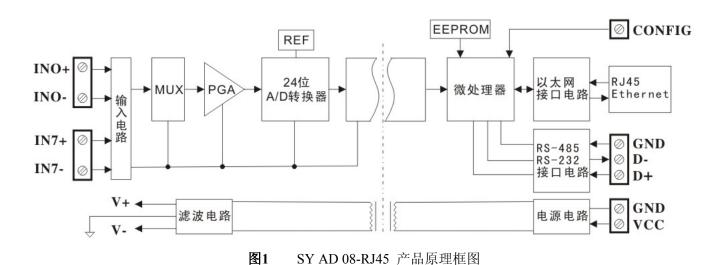
物联网/局域网模拟量采集隔离变送器: SY AD 08-RJ45

产品特点

- 4-20mA等模拟量直接转为以太网和总线通讯数字量
- 支持10M以太网RJ45接口,支持Modbus TCP通讯协议
- 支持RS 485/RS 232串口扩展, 支持Modbus RTU协议
- 测量精度优于0.05%, 可计算机程控校准模块精度
- 8路模拟量共地输入,I/O端与系统隔离电压3000VDC
- 辅助电源宽电压供电范围: 8 50VDC
- 外形美观,可靠性高,编程方便,DIN 35标准安装
- 用户可编程设置目标模块地址、波特率等

典型应用

- 用局域网对工业现场进行测量、监视和远程控制
- 以太网、RS232/485总线工控智能化系统实现
- 0-10V/4-20mA采集转换成以太网RJ45接口输出
- 传感器信号AD隔离转换、组网控制及远程变送
- 物联网多路模拟量数据采集、监控及远传
- 仪器仪表测量监控数据联网获取与记录
- 电力设备、交通设施等系统运行数据组网监控
- 环保、安防、医疗等各种仪器设备实现联网功能


第一章 概述

SunYuan SY AD 08-RJ45系列产品可实现传感器和主机之间的模拟量采集,用以检测模拟信号或控制远程设备。通过软件的配置,可用于多种传感器类型,包括:模拟信号输入,模拟信号输出,和数字信号输入/输出(I/O)。SY AD 08-RJ45系列产品可应用在 RS-232/485总线和RJ45接口以太网工业自动化控制系统,4-20mA/0-10V模拟量测量、监视和控制,0-1mA/0-30mV/小信号的测量以及工业现场信号隔离及长线传输等。

产品包括电源隔离,输入输出信号隔离、线性化,A/D转换和RS-485串行或以太网通讯。每个串口最多可接256 只SY AD 08-RJ45系列模块,通讯方式采用串口的 ASCII字符通讯协议或MODBUS RTU通讯协议和以太网的 MODBUS TCP,其指令集兼容于ADAM模块,配置参数可由用户设置,能与其他厂家的控制模块挂在同一总线上,便于计算机编程。

SY AD 08-RJ45系列产品是基于单片机的智能监测和控制系统,所有的用户设定的IP地址,端口号,校准值,ID地址,波特率,数据格式,校验,和状态等配置信息都储存在非易失性存储器EEPROM里。

SY AD 08-RJ45系列产品按工业标准设计、制造,信号输入/输出之间隔离,可承受3000VDC隔离电压,抗干扰能力强,可靠性高。工作温度范围-45℃~+85℃。

SY AD 08-RJ45 功能简介

SY AD 08-RJ45 信号隔离采集模块,可以用来测量八路电压或电流信号,支持串口专用ASCII指令协议和标准 Modbus RTU协议,支持以太网Modbus TCP协议。

1、模拟信号输入

24 位采集精度,产品出厂前所有信号输入范围已全部校准。在使用时,用户也可以很方便的自行编程校准。具体电流或电压输入量程请看产品选型,测量多路信号时每路输入选型必须相同。

2、通讯

(1) 串口通讯

通讯接口: 1路标准的 RS-485 通讯接口和 1路标准的 RS-232 通讯接口。

通讯协议: 支持两种种协议, ASCII 字符协议, MODBUS RTU 通讯协议。可通过编程设定使用那种通讯协议,

能实现与多种品牌的 PLC、RTU 或计算机监控系统进行网络通讯。

数据格式: 10位。1位起始位,8位数据位,1位停止位。

通讯地址: (00H-FFH) 和波特率 (300、600、1200、2400、4800、9600、19200、38400bps) 均可设定; 通讯网

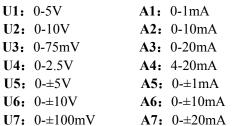
络最长距离可达 1200 米, 通过双绞屏蔽电缆连接。通讯接口高抗干扰设计, ±15KV ESD 保护, 通

信响应时间小于 100mS。

(2) 以太网通讯

通讯接口: 1路标准 10M 以太网接口。

通讯协议: 支持 MODBUS TCP 通讯协议。能实现与多种品牌的 PLC、计算机监控系统进行网络通讯。


3、抗干扰

可根据需要设置校验和。模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的数字滤波,也可以很好的抑制来自电网的工频干扰。

产品选型

SY AD 08 - RJ45 - U□ / **A**□

输入电压或电流信号值

U8: 用户自定义 A8: 用户自定义

备注: SY AD 08-RJ45 模块同时支持 RS232/RS485、以太网通讯接口,用户可根据使用环境选择对应通讯接口。但是在同一时刻: RS232/RS485 串口与以太网 RJ45 接口两个只能有一个工作,否则会产生干扰。

选型举例 1: 型号: SY AD 08-RJ45-A4; 表示 8 路 4-20mA 信号输入,以太网和 RS232/RS485 输出。 选型举例 2: 型号: SY AD 08-RJ45-A7; 表示 8 路 0-±20mA 信号输入,以太网和 RS232/RS485 输出。 选型举例 3: 型号: SY AD 08-RJ45-U1; 表示 8 路 0-5V 信号输入,以太网和 RS232/RS485 输出。

SY AD 08-RJ45 产品通用参数

(typical @ +25℃, Vs为24VDC)

输入类型: 电流输入 / 电压输入

精 度: 0.05% 输入失调: ±0.1 uA/℃

温度漂移: ±15 ppm/℃ (±30 ppm/℃, 最大)

输入电阻: 50Ω (4-20mA/0-20mA/0-±20mA电流输入)

100Ω (0-10mA/0-±10mA电流输入) 1KΩ (0-1mA/0-±1mA电流输入)

大于1MΩ(电压输入)

带 宽: -3 dB 10 Hz

转换速率: 10 Sps

共模抑制(CMR): 120 dB(1kΩ Source Imbalance @ 50/60 Hz)

常模抑制(NMR): 60 dB (1kΩ Source Imbalance @ 50/60 Hz)

输入端保护: 过压保护,过流保护

通 讯:

串口: 支持标准Modbus RTU协议和专用ASCII字符通讯协议, RS485 或 RS232接口 波特率 (300 bps、600 bps、1200 bps、2400 bps、4800 bps、9600 bps、19200 bps、38400bps)

可软件选择,地址(0x00~0xFF)可软件选择

以太网:支持标准Modbus TCP协议,RJ45网络接口 IP地址可软件设定,端口号可软件设定

通讯响应时间: 100 ms 最大

工作电源: +8 — 50 VDC 宽供电范围,内部有防反接和过压保护电路

功率消耗: 小于2W

工作温度: -45 — +80℃

工作湿度: 10 — 90% (无凝露)

存储温度: -55 — +85℃

存储湿度: 10—95%(无凝露)

隔离耐压: 输入/输出 之间: 3KVDC/1分钟,漏电流 1mA(其中输出和辅助电源共地)

耐冲击电压: 3KVAC, 1.2/50us(峰值)

外形尺寸: 83 x 37 x 51 mm

重 量: 约72g

产品外形尺寸及引脚定义

引脚	名 称	描述
1	IN0+	输入通道0正端
2	IN0-	输入通道0负端
3	IN1+	输入通道1正端
4	IN1-	输入通道1负端
5	IN2+	输入通道2正端
6	IN2-	输入通道 2 负端
7	IN3+	输入通道3正端
8	IN3-	输入通道3负端
9	IN4+	输入通道4正端
10	IN4-	输入通道 4 负端
11	IN5+	输入通道5正端
12	IN5-	输入通道 5 负端
13	IN6+	输入通道6正端
14	IN6-	输入通道6负端
15	VCC	电源正端
16	GND	电源地
17	D+	RS485/232 正接线端
18	D-	RS485/232 负接线端
19	GND	接地线
20	CONGFIG	配置引脚
21	IN7+	输入通道7正端
22	IN7-	输入通道7负端
23	RJ-45	以太网接口

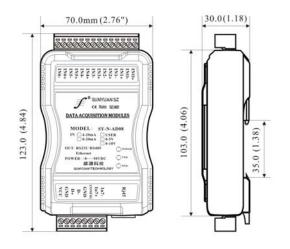


图 2 SY AD 08-RJ45 实物图

应用接线图:

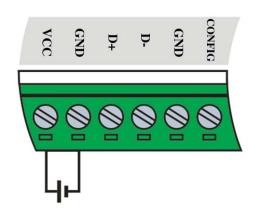


图 3 模块供电电源接线图

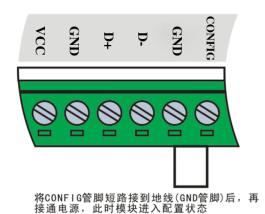


图 4 配置模式接线图

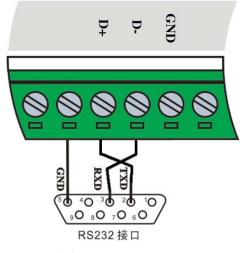


图 5 RS232 接口接线图

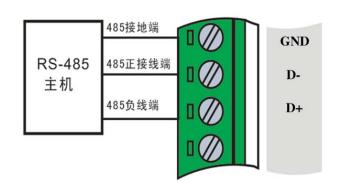


图 6 RS485 接口应用接线图

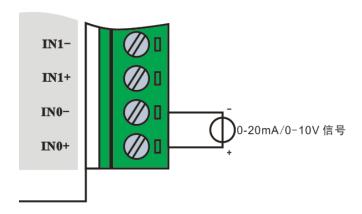


图 7 模块输入信号接线图

初始化 SY AD 08-RJ45 模块

(1) 接入 RS-232/RS-485 网络时,必须为 SY AD 08-RJ45 模块分配一个独一无二的 ID 地址代码,地址代码为 16 进制数,取值在 0x00 和 0xFF 之间。所有全新的 SY AD 08-RJ45 模块使用同一个工厂串口初始设置,如下所示:

地址代码为 01H

波特率 9600 bps

禁止校验和

ASCII 字符通讯协议

由于新模块的地址代码都是一样的,他们的地址将会和其他模块矛盾,所以当你组建系统时,你必须重新配置每一个模拟输入模块串口 ID 地址。可以在接好 SY AD 08-RJ45 模块电源线和 RS-232/RS-485 通讯线后,通过配置命令来修改 SY AD 08-RJ45 模块的地址。波特率,校验和状态,通讯协议也需要根据用户的要求而调整。而在修改波特率,校验和状态,通讯协议之前,必须让模块先进入配置状态,否则无法修改。

(2) 接入以太网网络时,必须为 SY AD 08-RJ45 模块分配一个独一无二的 IP 地址和端口号。

所有全新的 SY AD 08-RJ45 模块使用同一个工厂网络初始设置,如下所示:

IP 地址为 192.168.0.80

端口号为80

Modbus TCP 通讯协议

由于新模块的 IP 地址都是一样的,如果不做配置而直接组网,模块的 IP 地址可能会与其他网络 IP 冲突,所以当组建系统时,必须重新配置每一个模块的 IP 地址和端口号。可以在接好 SY AD 08-RJ45 模块电源线和通讯线后,通过配置命令来修改 SY AD 08-RJ45 模块的配置参数,通讯协议也可根据用户的要求而调整。在修改配置参数之前,必须让模块先进入配置状态,否则无法修改。

让模块进入配置状态的方法

SY AD 08-RJ45 模块都有一个特殊的标为 CONFIG 的管脚。将 CONFIG 管脚短路接到地线(GND 管脚)后,再接通电源,此时模块进入配置状态。在这个状态时,模块支持 ASCII 字符和 MODBUS TCP 通讯协议,模块的配置如下:

(1) 串口:

地址代码为 00H

波特率 9600 bps

禁止校验和

ASCII 字符通讯协议

(2) 以太网:

IP 地址为 192.168.0.80

端口号为 80

Modbus TCP 通讯协议

这时,可以通过配置命令来修改 SY AD 08-RJ45 模块的配置参数。在不确定某个模块的具体配置时,也可以通过安装配置跳线,使模块进入配置状态,再对模块进行重新配置。如果用户需要将模块串口通讯协议设置为 MODBUS RTU 通讯协议,请看 MODBUS 通讯协议章节的有关说明。

第二章 ASCII 字符通讯协议

简介

当控制器以ASCII字符通讯协议进行通讯时,一个信息中的每8Bit作为2个ASCII字符传输(如传送数字34,将分别传送3和4对应的ASCII码0x33和0x34),这种模式的主要优点是不限定命令字符间时间间隔。

字符协议命令集

命令由一系列字符组成,如首码、地址 ID,变量、可选校验和字节和一个用以显示命令结束符(cr)。SY AD 08-RJ45 模块不支持广播地址,所以主机一次只控制一个 SY AD 08-RJ45 模块。

命令格式: (Leading Code)(Addr)(Command)[data][checksum](cr)

(Leading code) 命令开始识别符。所有命令都需要一个命令开始识别符,如%,\$,#,@,...等。 1- 字符 2- 字符 (Addr) 模块的地址代码, 如果下面没有指定, 取值范围从 00~FF (十六进制)。 命令代码或变量值。 1- 字符 (Command) [data] 命令参数。 可变长度 [checksum] 校验和,为可选参数,只有在启用校验和时,才需要此选项。 2- 字符 (cr) 命令结束识别符,(cr)作为回车结束符,它的值为0x0D 1- 字符

校验和用来检查主机与模块通信是否正确。当启用校验和时,命令与应答都必须附加校验和 [Checksum] 参数。它占2个字符。校验和字符放置在命令或响应字符之后,回车符之前。

计算方法:求之前所发所有字符的ASCII码数值之和,然后与十六进制数0xFF相与。所得结果为两位十六进制数。

应用举例:禁止校验和(checksum)

用户命令 \$022(cr)

模块应答 !02000600 (cr)

启用校验和(checksum)

用户命令 **\$022B8 (cr)**

模块应答 !02000640AD (cr)

\$' = 0x24 0' = 0x30 2' = 0x32

B8=(0x24+0x30+0x32+0x32) AND 0xFF

'!' = 0x21 '0' = 0x30 '2' = 0x32 '4'=0x34 '6' = 0x36

AD=(0x21+0x30+0x32+0x30+0x30+0x30+0x36+0x34+0x30) AND 0xFF

常用模拟输入模块命令

- 1、读模拟输入模块数据
- 2、读模拟通道 N 输入模块数据
- 3、配置模块
- 4、读配置状态
- 5、偏移校准
- 6、满刻度校准
- 7、读模块名称
- 8、启用或禁止通道命令
- 9、读通道状态命令
- 10、读取串口通讯协议状态命令
- 11、设置串口通讯协议命令
- 12、读取网络端口号
- 13、设置网络端口号
- 14、读取网络IP地址
- 15、设置网络IP地址

命令的应答

应答信息取决于各种各样的命令。应答也由几个字符组成,包括首代码,变量和结束标识符。应答信号的首代码有两种, '!'或'>'表示有效的命令而'?'则代表无效。通过检查应答信息,可以监测命令是否有效。

注意: 1、需确保地址正确,如地址错误,目标模块不做响应。

2、命令须为大写字母。

1、读模块数据命令

功 能:以当前配置的数据格式,从模块中读回所有通道模拟输入值。

命令语法: #AA(cr)

参数说明: # 分界符。

AA 模块地址,取值范围 00H~FFH(十六进制)。

(cr) 结束符,上位机回车键(0DH)。

响应语法: >(data)(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明: > 分界符。

(data) 代表读回的所有通道数据。数据格式可以是工程单位,FSR 的百分比,16 进制补码,或者 ohms。 详细说明见命令集第 3 条。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

如果某个通道已经被关闭,那么读出的数据显示为空格字符。

应用举例: 用户命令 #23(cr)

模块应答 >+4.7653+4.7653+4.7653+4.7653+4.7653+4.7653+4.7653(cr)

说 明: 在地址 23H 模块上输入是+4.7653V(数据格式是工程单位)。通道 0-7: +04.7653V

2、读模块通道N数据命令

功 能:以当前配置的数据格式,从模块中读回通道 N 的模拟输入值。

命令语法: #AAN(cr)

参数说明: # 分界符。

AA 模块地址,取值范围 00H~FFH。

N 通道代号 0或1

(cr) 结束符,上位机回车键(0DH)。

响应语法: >(data)(cr) 命令有效。

?AA(cr) 命令无效或非法操作或通道被关闭。

参数说明: > 分界符。

(data) 代表读回的通道 N 的数据。数据格式可以是工程单位,FSR 的百分比,16 进制补码,或者 ohms。 详细说明见命令集第 3 条。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 #230(cr)

模块应答 >+04.632 (cr)

说 明:在地址 23H 模块上 通道 0 的输入是 +04.632mA (数据格式是工程单位)。

3、配置模块命令

功 能:设置一个模块的地址,输入范围,波特率,数据格式,校验和状态。配置信息储存在非易失性存储器 EEPROM 里。

命令语法: %AANNTTCCFF(cr)

参数说明:% 分界符。

AA 模块地址,取值范围 00H~FFH。

NN 代表模块新的 16 进制地址,数值 NN 的范围从 00 到 FF。

TT 用 16 进制代表类型编码。

CC 用 16 进制代表波特率编码, 详见表 2。

波特率代码	波特率
01	300bps
02	600bps
03	1200bps
04	2400bps
05	4800bps
06	9600bps
07	19200bps
08	38400bps

表 2 波特率代码

FF 用 16 进制的 8 位代表数据格式,校验和。注意从 bits2 到 bits5 不用必须设置为零。

Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0	Bit7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0
---	------	-------	-------	-------	-------	------	-------	-------

表3 数据格式,校验和代码

Bit7: 保留位,必须设置为零

Bit6: 校验和状态,为 0: 禁止; 为 1: 允许

Bit5-bit2:不用,一般设置为零。

Bit1-bit0:数据格式位。

00: 工程单位(Engineering Units) 01: 满刻度的百分比(% of FSR)

10: 16 进制的补码(Twos complement)

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作,或在改变波特率或校验和前,没有安装配置跳线。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址。

(cr) 结束符,上位机回车键(0DH)。

其他说明:注 3:如果用户要重新配置模块的地址、波特率、校验和状态以及数据格式,则必须安装配置跳线,使模块进入配置状态,此时模块地址为 00H,即 AA=00H,NN 等于新的地址。否则将返回错误信号。

注 4: 执行配置命令后,从机将新的地址作为响应数据返回给主机。

如地址错误或通讯故障, 目标模块不做响应。

应用举例:用户命令 %0011000600(cr)

模块应答 !11(cr)

说明:%分界符。

00 表示你想配置的模拟输入模块原始地址为00H。

11 表示新的模块 16 进制地址为 11H。

00 类型代码。

06 表示波特率 9600 bps。

00 表示数据格式为工程单位,禁止校验和。

4、读配置状态命令

功 能:读一个模块的配置信息。

命令语法: \$AA2(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00H~FFH。

2 表示读配置状态命令。

(cr) 结束符,上位机回车键(0DH)。

响应语法:!AATTCCFF(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符。

AA 代表输入模块地址。

TT 代表类型编码。

CC 代表波特率编码。详见表 2。

FF 详见表 3。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 \$302(cr)

模块应答 !300F0600(cr)

说明:! 分界符。

30 表示模拟输入模块地址为30H。

00 表示输入类型代码。

06 表示波特率 9600 bps。

00 表示数据格式为工程单位,禁止校验和。

5、偏移校准命令

功 能:校准一个模块的通道 N 的零点偏移。

命令语法: \$AA1N(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00H~FFH。

1 表示偏移校准命令。

N 通道代号 0~7。

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址。

(cr) 结束符,上位机回车键(0DH)。

其他说明:产品出厂时已经校准,用户无需校准即可直接使用。

当对一个模块进行校准时,应先校准偏移,再校准增益。

在校准时,模拟输入模块需在要校准的通道上加上合适的输入信号。不同的输入范围需要不同的输入电压或电流。具体校准方法请看校准模块章节。

如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 **\$2310(cr)**

模块应答 !23(cr)

说 明:对地址 23H 模块的通道 0 进行偏移校准。

6、增益校准命令

功 能:校准一个输入模块通道 N 的增益。

命令语法: \$AA0N(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00H~FFH。

0 表示增益校准命令。

N 通道代号 0~7

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址

(cr) 结束符,上位机回车键(0DH)。

其他说明:产品出厂时已经校准,用户无需校准即可直接使用。

当对一个模块进行校准时,应先校准偏移,再校准增益。

在校准时,模拟输入模块需在要校准的通道上加上合适的输入信号。不同的输入范围需要不同的输入电压或电流。具体校准方法请看校准模块章节。

如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 \$2303(cr)

模块应答 !23(cr)

说 明: 对地址 23H 模块的通道 3 进行增益校准。

7、读模块名称命令

功 能:读一个模块的名称。

AA 模块地址,取值范围 00H~FFH。

M 表示读模块名称命令。

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AA(ModuleName)(cr) 命令有效。

?AA(cr) 命令无效或非法操作

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址。

(ModuleName) 模块名称可以为 SY AD 08-RJ45 等等,代表你使用的模块型号。

(cr) 结束符,上位机回车键(0DH)。

其他说明:假如语法错误或通讯错误或地址不存在,模块不响应。

应用举例: 用户命令 \$08M(cr)

模块应答 !08SY AD 08-RJ45 (cr)

说 明: 在地址 08H 模块为 SY AD 08-RJ45。

8、启用或禁止通道命令

功 能:该命令用于打开或者关闭模块的某个通道。

命令语法: \$AA5VV(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00H~FFH。

5 表示启动或禁止模块的数据采集通道命令。

VV 两个16进制数,其对应二进制表达式的第7~0位代表第7~0通道。

位值为 0: 禁止通道

位值为 1: 启用通道

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 \$08537(cr)

模块应答 !08 (cr)

说 明: 设置目标模块通道值为 0x37。

3即0011,表示启用通道5和4,禁止通道7和6。 7即0111,表示启用通道2、1和0,禁止通道3。

9、读通道状态命令

功 能:读一个模块的通道状态命令。

命令语法: \$AA6(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00H~FFH。

6 表示读通道状态命令。

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AAVV(cr) 命令有效。

?AA(cr) 命令无效或非法操作

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址。

VV 两个16进制数,数的7~0位代表7~0通道。

位值为 0: 禁止通道 位值为 1: 启用通道

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 \$186 (cr)

模块应答 !18FF(cr)

说 明: 当前通道状态值为 0xFF。

0xFF 即 1111 和 1111,表示地址 18H 的模块所有通道都已经启用。

10、读取串口通讯协议状态命令

功 能:读取模块串口通讯协议的状态。

命令语法: \$AAP(cr)

参数说明: \$ 分界符。

AA 目标模块地址,取值范围 00~FF(十六进制)。

P 表示串口通讯协议关键字。

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AAPV(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

- AA 目标模块地址。
- P 表示串口通讯协议关键字。
- V 协议代号,可为 0 或 1。
 - 0: 命令集定义的字符协议
 - 1: Modbus RTU协议
- (cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 \$00P(cr)

块应答 !00P1(cr)

说明: 当前串口通讯协议为 Modbus RTU 协议。

11、设置串口通讯协议命令

功 能:设置模块的通讯协议为 ASCII 字符通讯协议或者 Modbus RTU 协议。

命令语法: \$AAPV(cr)

参数说明: \$ 分界符。

AA 模块地址,取值范围 00H~FFH。

P 表示串口通讯协议关键字。

V 协议代号,可为0或1。

0: 命令集定义的字符协议

1: Modbus RTU 协议

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 代表输入模块地址。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

设置通讯协议命令必须在配置状态下才会有效。

应用举例 1: 用户命令 \$00P1(cr)

模块应答 !00 (cr)

说明: 设置通讯协议为 Modbus RTU 协议。

应用举例 2: 用户命令 **\$00P0(cr)**

模块应答 !00 (cr)

说 明: 设置通讯协议为命令集定义的字符协议。

12、读取网络端口号命令

功 能:读取模块以太网接口的端口号。

命令语法: \$AAW(cr)

参数说明: \$ 分界符。

AA 目标模块地址,取值范围 00~FF(十六进制)。

W 网络端口号的关键字。

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AAxxxx(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 目标模块地址。

W 网络端口号的关键字。

xxxx 代表十六进制的16位数。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 **\$00W** (cr)

块应答 !00W0050(cr)

说 明: 当前网络端口号为 0x50, 也就是 80。

13、设置网络端口号命令

功 能: 读取模块以太网接口的端口号。

命令语法: \$AAWxxxx(cr)

参数说明: \$ 分界符。

AA 目标模块地址,取值范围 00~FF(十六进制)。

W 网络端口号的关键字。

xxxx 代表十六进制的 16 位数。

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 目标模块地址。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 \$00W0050(cr)

块应答 !00(cr)

说 明:设置网络端口号为 0x50,也就是 80。

14、读取网络IP地址命令

功 能:读取模块以太网接口的端口号。

命令语法: \$AAD(cr)

参数说明: \$ 分界符。

AA 目标模块地址,取值范围 00~FF(十六进制)。

D 网络 IP 的关键字。

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AAD:xx-yy-zz-nn(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

: 分界符。

分界符。

AA 目标模块地址。

D 网络端口号的关键字。

: 分界符。

xx 代表IP地址的31-24位,用两位十六进制数表示。

yy 代表IP地址的23-16位,用两位十六进制数表示。

zz 代表IP地址的15-8位,用两位十六进制数表示。

nn 代表IP地址的7-0位,用两位十六进制数表示。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 \$00D(cr)

块应答 !00D: C0-A8-00-50(cr)

说 明: 当前网络 IP 地址为 0xC0A80050, 也就是 192.168.0.80。

15、设置网络IP地址命令

功 能:读取模块以太网接口的端口号。

命令语法: \$AAD:xx-yy-zz-nn(cr)

参数说明: \$ 分界符。

: 分界符。

- 分界符。

AA 目标模块地址,取值范围 00~FF(十六进制)。

D 网络 IP 的关键字。

xx 代表IP地址的31-24位,用两位十六进制数表示。

yy 代表IP地址的23-16位,用两位十六进制数表示。

zz 代表IP地址的15-8位,用两位十六进制数表示。

nn 代表IP地址的7-0位,用两位十六进制数表示。

(cr) 结束符,上位机回车键(0DH)。

响应语法: !AA(cr) 命令有效。

?AA(cr) 命令无效或非法操作。

参数说明:! 分界符,表示命令有效。

? 分界符,表示命令无效。

AA 目标模块地址。

(cr) 结束符,上位机回车键(0DH)。

其他说明:如地址错误或通讯错误,目标模块不做响应。

应用举例: 用户命令 \$18W (cr)

块应答 !180050(cr)

说 明:设置前网络IP地址为0xC0A80050,也就是192.168.0.80。

输入范围和数据格式

模拟输入模块使用了4种数据格式:

00: 工程单位(Engineering Units)

01: 满刻度的百分比(% of FSR)

10: 16 进制的补码(Twos complement)

输入范围	数据格式	正满量程	零	负满量程	显示的分辨率
A1: 0-1mA	工程单位	+1.0000	±0.0000	-1.0000	0.1uA
A1: 0-1111A A5: 0-±1mA	满刻度的百分比	+100.00	±000.00	-100.00	0.01%
A5: U-±1111A	16 进制的补码	7FFFFF	000000	800000	1LSB
A2: 0-10mA	工程单位	+10.000	±00.000	-10.000	1uA
A6: 0-±10mA	满刻度的百分比	+100.00	±000.00	-100.00	0.01%
	16 进制的补码	7FFFFF	000000	800000	1LSB
A3: 0-20mA	工程单位	+20.000	±00.000	-20.000	1uA
A4: 4-20mA	满刻度的百分比	+100.00	±000.00	-100.00	0.01%
A7: 0-±20mA	16 进制的补码	7FFFFF	000000	800000	1LSB
	工程单位	+5.0000	±0.0000	-5.0000	0.1mV
U1: 0-5V	满刻度的百分比	+100.00	±0.0000 ±000.00	-100.00	0.11114
∪ 5: 0-±5V	16 进制的补码	7FFFF	000000	800000	1LSB
	10 大工山山山小山	71.1.1.1.	000000	800000	ILSD
U2: 0-10V	工程单位	+10.000	±00.000	-10.000	1mV
U2: U-1UV U6: 0-±10V	满刻度的百分比	+100.00	±000.00	-100.00	0.01%
U 0: U- ±1UV	16 进制的补码	7FFFFF	000000	800000	1LSB
输入范围	数据格式	— □ 正满量程	零		显示的分辨率
	工程单位	+75.000	±00.000	-75.000	1uV
U 3: 0-75mV	满刻度的百分比	+100.00	±000.00	-100.00	0.01%
	16 进制的补码	7FFFFF	000000	800000	1LSB
	工程单位	+2.5000	±0.0000	-2.5000	0.1mV
U4: 0-2.5V	满刻度的百分比	+100.00	±000.00	-100.00	0.01%
	16 进制的补码	7FFFFF	000000	800000	1LSB

SY Series Data Acquisition Isolation Transmitter

	工程单位	+100.00	±000.00	-100.00	0.01mV
U7: 0-100mV	满刻度的百分比	+100.00	±000.00	-100.00	0.01%
	16 进制的补码	7FFFFF	000000	800000	1LSB
A8 : 用户自定义 U8: 用户自定义	工程单位	+100.00	±000.00	-100.00	0.01%
	满刻度的百分比	+100.00	±000.00	-100.00	0.01%
00. /11/ 1122	16 进制的补码	7FFFFF	000000	800000	1LSB

表 4 输入范围和数据格式

应用举例

1、输入范围为±20mA,输出为4 mA

	用户命令	#01(cr)
工程单位	模块应答	>+04.000(cr)
满刻度的百分比	模块应答	>+020.00(cr)
16 进制的补码	模块应答	>199999(cr)

2、输入范围为±10V,输出为2.5V

	用户命令	#01(cr)
工程单位	模块应答	>+02.500(cr)
满刻度的百分比	模块应答	>+025.00(cr)
16 进制的补码	模块应答	>1FFFFF(cr)

3、十六进制补码与模拟量转换关系

当模块为电流/电压输入类型时,可使用如下关系转换: X/7FFFFF=Xin/Xf

说明: X: 表示模拟量相对应十六进制补码

Xin:表示通道输入的模拟信号量。

Xf: 表示产品满量程之模拟量。例如 20mA。

- 4、在电压量输入类型时, Xin 为通道电压输入量 Vin, Xf 为满度电压输入量.
- 5、若输入量为负电压、电流量时,读取值取反加一后带入上式计算相应模拟量值。

第三章 Modbus RTU 通讯协议

简介

Modbus协议定义了控制器能识别和使用的信息结构。当在Modbus网络上进行通信时,协议能使每一台控制器知道它本身的设备地址,并识别对它寻址的数据,决定应起作用的类型,取出包含在信息中的数据和资料等,控制器也可组织回答信息,并使用Modbus协议将此信息传送出去。

控制器通信使用主-从技术,即仅一设备(主设备)能初始化传输(查询)。其他设备(从设备)根据主设备查询提供的数据做出相应反应。典型的主设备:主机和可编程仪表。典型的从设备:可编程控制器。

主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。Modbus 协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。

从设备回应消息也是由 Modbus 协议构成,包括确认要行动的域,任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去

Modbus 有 ASCII 和 RTU 两种传输方式:

以 ASCII 模式通信时,一个消息中的每个 8bit 字节都作为 2 个 ASCII 字符发送,采用 LRC 错误检测,其优点是字符发送的时间间隔可达到 1s 而不产生错误;

当以 RTU 模式通信时,在消息中的每个 8bit 字节包含两个 4bit 的十六进制字符,采用 CRC 错误检测,其优点是在同样的波特率下,可以比 ASCII 方式传送更多数据。

ASCII 模式与 RTU 模式数据格式,更多内容可查阅相关 Modbus 通讯协议。

ASCII 模式与 RTU 模式数据格式对比:

SY Series Data Aca	uisition Iso	lation Tra	nsmitter
--------------------	--------------	------------	----------

_	SUNTUANSE		0100	ertes Buttliffeliustition Isothition Irunismitte		
			ASCII 模式		RTU 模式	
	代码系统	•	十六进制,ASCII 字符 0~9,A~F	•	8 位二进制,十六进制 0~9,A~F	
		•	消息中的每个 ASCII 字符都是一个十六	-	消息中的每个8位域都是一个两个十六进制	
			进制字符组成		字符组成	
	数据位	•	1个起始位	•	1 个起始位	
		•	7个数据位,最小的有效位先发送	-	8个数据位,最小的有效位先发送	
			1个奇偶校验位,无校验则无	-	1 个奇偶校验位,无校验则无	
		•	1个停止位(有校验时), 2个Bit(无校验	-	1 个停止位(有校验时), 2 个 Bit (无校验时)	
			时)			
Ī	错误检验区	•	LRC(纵向冗长检测)	•	CRC(循环冗长检测)	

说明:本模块仅支持Modbus RTU传输方式,不支持Modbus ASCII传输方式。

1、配置Modbus RTU模式

模块出厂默认协议为ASCII字符通讯协议,如果需要将模块设置为Modbus RTU通讯协议,请按以下步骤设置:

- 1、将CONFIG引脚(第3脚)和GND引脚(第4脚)短接。
- 2、正确连接电源线和通讯接口线。
- 3、接通电源,模块自动进入配置状态,此时模块通讯地址为00,波特率为9600。
- 4、等待1分钟,模块初始化。
- 5、发送命令**\$00P1(cr)**(**00为相应模块地址,另可参考设置通讯协议命令**),检查应答,如果为**!00 (cr)**则设置成功。
- 6、关闭电源,断开CONFIG引脚和GND引脚之间的连接。
- 7、模块已经成功设置为Modbus RTU通讯协议方式。

2、Modbus RTU下数据格式

主机查询

主机查询信息规定了要读的寄存器起始地址及寄存器的数量,寄存器寻址起始地址为0000。

查询格式如下:

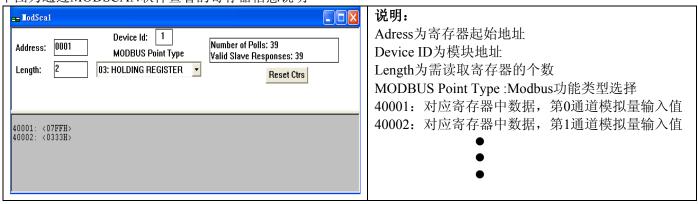
Slave	Function	Starting	Starting	No. of Points	No. of Points	Error
Address		Address Hi	Address Lo	Hi	Lo	Check(CRC)
01	03	00	00	00	08	44 OC

如主机发送查询信息Tx: 01 03 00 00 00 08 44 0C

- 01 设备地址
- 03 功能代码
- 00 00 寄存器寻址起始地址
- 00 08 寄存器数量
- 44 0C CRC校验码

从机响应

从机响应信息中的寄存器数据为每个寄存器分别对应的2个字节,第一个字节为高位数据,第二个为低位数据。响应格式如下:


Slave Address	Function	Byte Count	Data Hi(Register 40001)	Data Lo(Register 40001)	Data Hi(Register 40002)	Data Lo(Register 40002)	Error Check(CRC)
01	03	10	19	99	99	00	9E 68

- 01 设备地址
- 03 功能代码
- 10 字节数量
- 1999 第一个寄存器数据
- 00 00 第二个寄存器数据
 - •

87 69 CRC校验码

下图为通过MODSCAN软件查看的寄存器信息说明

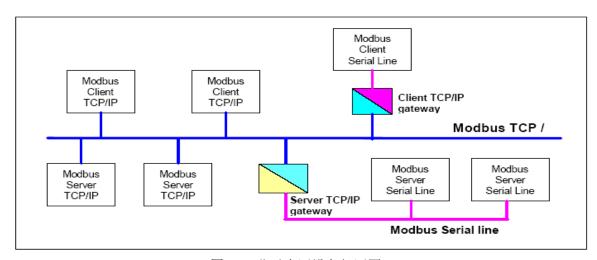
所支持寄存器说明: Modbus RTU 寄存器

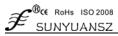
地址 4X	数据内容	属性	数据说明
40001	IN0	只读	第0通道模拟量输入值
40002	IN1	只读	第1通道模拟量输入值
40211	模块名称	只读	高位: 0x40 低位: 0x21
40221	通道状态	读/写	高位: 0x00 低位: 通道状态 (0x03)

第四章 Modbus TCP 通讯协议

简介

Modbus TCP 协议是 MODBUS 协议另一版本,它于 1999 年被开发出来以允许 Internet 用户访问以太网设备。由于没有任何商业利益驱使,Modbus TCP 协议的开放性及用户对它的熟悉程度再加上其应用的简单易学,目前 Modbus TCP 已经成为世界领先的工业以太网协议。




图 8 工业以太网设备组网图

此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了控制器请求 访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共 格式。

当在Modbus 网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus 协议发出。在其它网络上,包含了Modbus 协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。

1、Modbus TCP方式

		1	ı	ı	
MBAP Header	功能代码	数据量	数据 1		数据 n
协议头	功能域	数据域			

帧定界: 在MODBUS TCP 方式下,由于模块的地址由IP 地址确定,所以不再有地址域内容,考虑到TCP 网络是可靠的数据传输网络,故不再有校验数据。但是考虑到在IP 网上数据到达的顺序可能与我们预期的数据不一致,故增加了一个数据序号,考虑到在MODBUS TCP 协议上承载MODBUS 协议,还在头部数据中增加了一个地址域。

MBAP 报文头及协议头包括下列域:

域	长度	描述	客户机	服务器
事务元标识符	2 个字节	MODBUS 请求/ 响码	客户机启动	服务器从接收的请求 中重新复制
协议标识符	2 个字节	0=MODBUS 协议	客户机启动	服务器从接收的请求 中重新复制
长度	2 个字节	以下字节的数量	客户机启动(请求)	服务器(响应)启动
单元标识符	1 个字节	串行链路识别码	客户机启动	服务器从接收的请求 中重新复制

报文头为7 个字节长:

事务处理标识符:用于事务处理配对。在响应中,MODBUS服务器复制请求的事务处理标识符。

协议标识符:用于系统内的多路复用。通过值0识别MODBUS协议。

长度:长度域是下一个域的字节数,包括单元标识符和数据域。

单元标识符:为了系统内路由,使用这个域。专门用于通过以太网TCP-IP网络和MODBUS串行链路之间的网关对MODBUS或MODBUS+串行链路从站的通。MODBUS客户机在请求中设置这个域,在响应中服务器必须利用相同的值返回这个域。

2、SY支持指令

目前,本公司所开发的以太网数据采集模块采用 Modbus TCP 协议。支持的功能码(十六进制表示)主要包括如下几种:

- 03 读保持寄存器
- 04 读输入寄存器
- 06 设置单个保持寄存器
- 10 设置多个保持寄存器
- 41 SY 自定义指令

3、指令及地址映射表

(1) 读保持寄存器

功能码: 03

说明: 读取保持寄存器的值

数据说明:读取的是十六位整数或字符数据

地址	描述	说明
40000-40001	第 0 路零点校准系数	十六进制格式(低 24 位有效)
40002-40003	第1 路零点校准系数	十六进制格式(低 24 位有效)
40004-40005	第2路零点校准系数	十六进制格式(低 24 位有效)
40006-40007	第3路零点校准系数	十六进制格式(低 24 位有效)
40008-40009	第 4 路零点校准系数	十六进制格式(低 24 位有效)
40010-40011	第 5 路零点校准系数	十六进制格式(低 24 位有效)
40012-40013	第6路零点校准系数	十六进制格式(低 24 位有效)
40014-40015	第7路零点校准系数	十六进制格式(低 24 位有效)
40016-40017	<保留>	
40018-40019	<保留>	
40020-40021	<保留>	
40022-40023	<保留>	
40024-40025	<保留>	
40026-40027	<保留>	
40028-40029	<保留>	
40030-40031	<保留>	
40032-40033	第 0 路斜率校准系数	十六进制格式(低24位有效)
40034-40035	第1路斜率校准系数	十六进制格式(低24位有效)

JANSZ	51 50	ries Data Acquisition Isotation Tra
40036-40037	第2路斜率校准系数	十六进制格式(低24位有效)
40038-40039	第 3 路斜率校准系数	十六进制格式(低24位有效)
40040-40041	第 4 路斜率校准系数	十六进制格式(低24位有效)
40042-40043	第 5 路斜率校准系数	十六进制格式(低24位有效)
40044-40045	第 6 路斜率校准系数	十六进制格式(低24位有效)
40046-40047	第 7 路斜率校准系数	十六进制格式(低24位有效)
40048-40049	<保留>	
40050-40051	<保留>	
40052-40053	<保留>	
40054-40055	<保留>	
40056-40057	<保留>	
40058-40059	<保留>	
40060-40061	<保留>	
40062-40063	<保留>	
40064	串口 ID 高位	字符格式
40065	波特率代号	字符格式(低8位有效)
40066	量程代号高位	字符格式
40067	ASCII 数据格式 LRC 效验	字符格式
40068	通讯协议类型	字符格式(低8位有效)
40069	通道开启功能	字符格式
40070	NET 端口号	十六进制格式
40071	NET IP 地址高位	十六进制格式
40072	NET IP 地址低位	十六进制格式
40073	NET MAC 地址高位	十六进制格式
40074	NET MAC 地址中位	十六进制格式
40075	NET MAC 地址低位	十六进制格式
40076-40127	<保留>	
	*	<u> </u>

MODBUS 请求

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x03
起始地址	2byte	0x0000 to 0x00FF
读取数量	2byte	1 to 125 (0x7D0)

MODBUS 响应

14/		
域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x03
字节计数	1byte	2n
输入状态	2byte	

错误响应

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x03+0x80
错误代码	1byte	0x1 or 0x2

举例说明

i.请求: 读模块输入量程

01 00 00 00 00 06 00 03 00 42 00 01

响应:

01 00 00 00 00 05 00 03 02 30 30

ii.请求:读配置信息(全部)

00 00 00 00 00 06 00 03 00 00 00 7F

响应:

注意: eeprom 为 256, 映射地址为 128, 地址 0xFF(128)的 6D 为 IIC 器件的地址,不可读写。

(2) 读输入寄存器

功能码: 04

说明: 读取输入数据

数据说明: 读取的是十六位整数或无符号整数

地址	描述	说明
30000	第1路模拟量输入	16位模拟量输入值(2byte)
30001	第2路模拟量输入	16位模拟量输入值(2byte)
30002	第3路模拟量输入	16位模拟量输入值(2byte)
30003	第4路模拟量输入	16位模拟量输入值(2byte)
30004	第5路模拟量输入	16位模拟量输入值(2byte)
30005	第6路模拟量输入	16位模拟量输入值(2byte)
30006	第7路模拟量输入	16位模拟量输入值(2byte)
30007	第8路模拟量输入	16位模拟量输入值(2byte)
30008	<保留>	
30009	<保留>	
30010	<保留>	
30011	<保留>	
30012	<保留>	
30013	<保留>	
30014	<保留>	
30015	<保留>	

MODBUS 请求

114.4.		
域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x04
起始地址	2byte	0x0000 to 0x000F
读取数量	2byte	1 to 16 (0x0010)

MODBUS 响应

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x04
字节计数	1byte	2n
输入状态	2byte	

错误响应

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x04+0x80
错误代码	1byte	0x1 or 0x2

举例说明

i.请求: 读模拟量输入

00 00 00 00 00 06 00 04 00 01 00 02

响应:

00 00 00 00 00 07 00 04 04 00 00 FF FF

(3) 设置单个保持寄存器

功能码: 06 MODBUS 请求

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x06
设置地址	2byte	0x0000 to 0x007F
设置内容	2byte	0x0000 to 0xFFFF

MODBUS 响应

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x06
设置地址	2byte	0x0040 to 0x007F
设置内容	2byte	0x0000 to 0xFFFF

错误响应

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x06+0x80
错误代码	1byte	0x1 or 0x2

举例说明

i.请求: 设置通讯协议类型

00 00 00 00 00 06 00 06 00 44 00 02

响应:

00 00 00 00 00 06 00 06 00 44 00 02

(4) 设置多个保持寄存器

功能码: 10

MODBUS 请求

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x10
设置起始地址	2byte	0x0040 to 0x007F
设置长度	2byte	0x0000 to 0x0100
字节计数	1byte	2n
设置内容	2nbyte	

MODBUS 响应

域名称	字节数	取值
MBAP Header	7byte	
功能码	1byte	0x10
设置起始地址	2byte	0x0040 to 0x00FF
设置长度	2byte	0x0000 to 0x0100

错误响应

域名称	字节数	取值
MBAP Header	7byte	

功能码	1byte	0x10+0x80
错误代码	1byte	0x1 or 0x2

举例说明

i.请求:设置模块 ASCII ID/波特率

00 00 00 00 00 0B 00 10 00 40 00 02 04 30 31 00 36

响应:

00 00 00 00 00 06 00 10 00 40 00 02

(5) 设置零点-增益寄存器

功能码: 41

说 明: SY 扩展功能码

格式: 00 00 00 00 00 04 00 41 xx yy

xx: 子功能码

01: 零点校准功能

00: 增益校准功能

yy: 通道代号 0-15 (十六进制)

范例:通道5校准 (先零点校准,后增益校准)

零点:

请求: 00 00 00 00 00 04 00 41 01 05

响应: 00 00 00 00 00 04 00 41 01 05

增益:

请求: 00 00 00 00 00 04 00 41 00 05 响应: 00 00 00 00 00 04 00 41 00 05

第五章 模块校准

校准必须在 ASCII 字符或 Modbus TCP 通讯协议下进行。Modbus RTU 协议下不支持校准。

产品出厂时已经校准,用户无需校准即可直接使用。使用过程中,用户也可重新校准模块。在校准时,模块需要输入合适的信号,不同的输入范围需要不同的输入信号。

为了提高校准精度,建议使用以下设备来校准:

- 1、一个输出稳定,噪声很低的直流电压/电流信号源
- 2、一个5位半或更高精度的电压/电流测量仪表监测输入信号的准确性

校准过程

选择要校准的输入通道、按照模块的输入范围接上对应的输入信号。

其中SY-N-AD08模块零点在输入0时校准,满度在输入满度的120%时校准。例如4-20mA输入时,校准零点时输入0mA,校准满度时输入24mA.(0-5V输入时,校准零点时输入0V,校准满度时输入6V)。

给模拟输入模块需要校准的通道输入零点信号,通常为0mA或0V。

待信号稳定后,向模拟输入模块发送ASCII字符或Modbus TCP偏移校准命令:

ASCII字符:\$AA0N

Modbus TCP: 00 00 00 00 00 04 00 41 01 0N

(AA代表模块当前ID号,N代表当前正在校准的通道代号,0-7)。

给模拟输入模块需要校准的通道输入满度的120%的电流或电压信号。

待信号稳定后,向模拟输入模块发送ASCII字符或Modbus TCP增益校准命令:

ASCII字符: \$AA0N (N代表当前正在校准的通道代号, 0-7)。

Modbus TCP: 00 00 00 00 00 04 00 41 00 0N

(AA代表模块当前ID号,N代表当前正在校准的通道代号,0-7)。

校准完成。